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We consider the trajectories of particles suspended in a randomly moving fluid. If the Lyapunov exponent of
these trajectories is negative, the paths of these particles coalesce, so that particles aggregate. Here we give a
detailed account of a method �B. Mehlig and M. Wilkinson, Phys. Rev. Lett. 92, 250602 �2004�� for calcu-
lating this exponent: it is expressed as the expectation value of a random variable evolving under a stochastic
differential equation. We analyze this equation in detail in the limit where the correlation time of the velocity
field of the fluid is very short, such that the stochastic differential equation is a Langevin equation. We derive
an asymptotic perturbation expansion of the Lyapunov exponent for particles suspended in three-dimensional
flows in terms of a dimensionless measure of the inertia of the particles, �, and a measure of the relative
intensities of potential and solenoidal components of the velocity field, �. We determine the phase diagram in
the �-� plane.
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I. INTRODUCTION

A. Illustration and context

Figure 1 illustrates a simulation of the distribution of
small particles suspended in a three-dimensional random
flow: the particles are modeled as points, but they are shown
as small spheres to make them visible in the figure. The
suspended particles do not interact �that is, the motion of
each particle is independent of the coordinates of the other
particles, the equations of motion are given below�. We show
the initial configuration �Fig. 1�a��, and two snapshots of the
particle positions after a long time, with differing values of
the fluid viscosity, �Figs. 1�b� and 1�c��. In one case the
particles aggregate, in the sense that the trajectories of dif-
ferent particles coalesce. In the other case their distribution
shows some degree of clustering, but their trajectories never
coalesce. In this paper we present an analysis of the transi-
tion between aggregating and nonaggregating phases of non-
interacting point particles, which we term the path-
coalescence transition. We remark that finite-sized particles
which combine when they approach within a given radius
will eventually aggregate when advected in a mixing flow.
This is a different problem, which is not addressed in our
paper.

There are numerous experimental observations that when
small particles are suspended in a complex and apparently
random flow, their density becomes nonuniform. Clustering
of particles into regions of high density has been observed in
experiments on particles floating on the surface of liquids
with a complex or turbulent flow �1,2�, and also turbulent
flow in channels �3,4�. The conditions under which this oc-
curs are not yet fully understood. The aggregation effect il-
lustrated in Fig. 1 is an extreme form of clustering. There
appears to be less experimental work on aggregation, and
this process is still not very well understood. In particular it
is not clear when a model of point particles suspended in a
random flow can exhibit aggregation, and when additional
physical phenomena involving the finite size of the particles
must be invoked.

Earlier theoretical work on clustering in random flows has
used Fokker-Planck equations determining moments of the
particle density of advected particles �5�. This passive scalar
approach does not allow for the effects of inertia of the par-
ticles. It has been supplemented by a perturbative analysis of
the deviations of particles from advected trajectories, as pro-
posed by Maxey �6�. These two approaches are combined in
Refs. �7,8�. Numerical work indicates that clustering in sole-
noidal flows occurs most readily when the correlation time of
the velocity field is comparable with the time constant asso-
ciated with the viscous drag �9,10�. The aggregation �as op-
posed to clustering� of particles by random flows has re-
ceived relatively little attention. Deutsch �11� appears to have
been the first to propose that particles subjected to a smooth
random flow can coalesce, and showed numerical evidence
that this can happen in one dimension. He argued that there
is a transition between coalescing and noncoalescing phases,
and identified the dimensionless parameter which determines
the phase transition in one dimension.

This paper describes results obtained from an approach to
characterizing particle aggregation in random flows. An out-
line of this method and results for two spatial dimensions
have been published previously in a shorter communication
�12�.

Particles suspended in a randomly moving fluid aggregate
if the maximal Lyapunov exponent characterizing the rate of
separation of nearby particles is negative. Here we show how
to calculate this exponent as the expectation value of one of
several random variables evolving under coupled stochastic
differential equations. In the limit as the correlation time of
the flow approaches zero, the stochastic differential equa-
tions can be reduced to a pair of Langevin equations. We
give a detailed account of the method and use it to derive
results for three-dimensional flows. The corresponding re-
sults for one and two spatial dimensions are summarized in
Ref. �13� �where we solved Deutsch’s one-dimensional
model exactly�, and in Ref. �12� �two-dimensional case�. The
three-dimensional case discussed in the following is most
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important for physical applications, but involves substantial
additional technical complications.

We remark that the two-dimensional case was also con-
sidered in Ref. �14� where an analytic expression for the
maximal Lyapunov exponent was quoted. This expression is
incorrect in two dimensions, because the generating function
used in deriving the result is divergent for the equilibrium
distribution. The calculation can be adapted to give the cor-
rect expression in the one-dimensional case, as quoted in
Ref. �12�.

The definition of Lyapunov exponents is explained in Ref.
�15�, where the method we use for extracting the Lyapunov
exponents from direct numerical simulations is also dis-
cussed. We note that in the case where inertia of the particles
can be neglected, our results reduce to calculating the
Lyapunov exponent for spatially correlated Brownian mo-
tion, which was discussed from a mathematical point of view
in Ref. �16� and Ref. �17�.

B. The model

The most natural model for theoretical investigation is the
motion of spherical particles �radius a, mass m� moving in a
random velocity field u�r , t� with specified isotropic and ho-
mogeneous statistical properties. The particles are assumed
not to affect either the flow, or each other’s motion, and to
experience a drag force given by Stokes’s law: the force fdr
on a particle moving with velocity v relative to the fluid is
fdr=−6��av, where � is the viscosity of the fluid. We will
simplify the problem by assuming that the particles are made
of a material which is much denser than the fluid in which
they are suspended: this enables us to neglect the inertia of
the displaced fluid. Accordingly, we consider a large number
of suspended particles, initially with random positions and
zero velocity, having equations of motion

ṙ =
1

m
p, ṗ = − ��p − mu�r,t�� . �1�

The random velocity field u�r , t� could be either externally
imposed �for example, if a gas is driven by an ultrasonic
noise source�, or self-generated �as in the case of turbulence�.
The equations of motion with displaced mass effects in-
cluded are discussed in Ref. �18�. Our neglect of displaced
mass effects is justified for aerosol systems. In order to fully
specify the problem we must define the statistical properties
of the random velocity field u�r , t�. The random force f
=m�u is generated from a vector potential A= �A1 ,A2 ,A3�
and a scalar potential �=A0:

f = �� + � ∧ A . �2�

The scalar fields Ai�r , t� have isotropic, homogeneous, and
stationary statistics. We assume that these fields are statisti-
cally independent, and that they all have the same correlation
function, except that the intensity of �=A0 exceeds that of
the other fields by a factor 1 /	2:

FIG. 1. �Color online� Illustrating the aggregation of noninter-
acting particles in a random three-dimensional flow, the motion is
defined by Eqs. �1�–�3�, using a simplified form explained in Sec.
III, see Eqs. �41� and �42�. Panel �a� shows the initial configuration
at t=0, panels �b� and �c� show configurations after a long time for
two different values of �. In the case shown in the center panel,
trajectories coalesce, until eventually all particles follow the same
trajectory. The particles in the right panel exhibit density fluctua-
tions, but the trajectories do not coalesce.
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�Ai�r,t�Aj�r�,t��� = 
ij��1 − 	2�
i0 + 	2�C� �r − r��
�

,
t − t�

�
	 .

�3�

The random force f�r , t� is characterized by typical magni-
tude 
, correlation length �, and correlation time �. In the
case of a well-developed turbulent flow, the velocity field has
a power-law spectrum with upper and lower cutoffs �19�. If a
random velocity field modeling fully developed turbulence is
used in our model, it is most appropriate to take the correla-
tion length and time to be those of the dissipation scale, that
is, the cutoff with the smaller length scale.

The system of equations is characterized by three inde-
pendent dimensionless parameters, which we take as

� = ��, � =

�2

m�
, 	 . �4�

The parameter � is a dimensionless measure of the degree of
damping, � is a dimensionless measure of the strength of the
forcing term, and 	 determines the relative magnitudes of
potential and solenoidal components of the velocity field
�which is purely potential when 	=0, and purely solenoidal
in the limit as 	→��. Later, immediately below Eq. �35�, we
will find it convenient to introduce an alternative measure of
the relative strengths of potential and solenoidal components:
�= �1+4	2� / �3+2	2�.

C. Description of results

We show that the phase transition is determined by a
Lyapunov exponent, �1, describing the separation of nearby
particles: their trajectories coalesce if �1�0. Here we de-
scribe a general approach to this problem, reducing the de-
termination of the Lyapunov exponent to the analysis of a
simple dynamical system, described by a system of ordinary
differential equations containing stochastic forcing terms: the
Lyapunov exponent is found to be proportional to the expec-
tation value of one coordinate. These stochastic differential
equations are derived in Sec. II. They introduce an apparent
paradox: the structure of the equations appears to be identical
in two-dimensional and three-dimensional flows, suggesting
that the path-coalescence transition is fundamentally the
same in two and three dimensions. That would be a very
surprising conclusion.

In order to demonstrate and illuminate our method, in
Secs. III and IV we pursue the solution of this problem in
considerable depth in one limiting case, namely the limit
where the correlation time � of the random velocity field is
small and the random force is sufficiently weak �strictly, we
consider the case where ����1�. In this limit, the system
of ordinary differential equations described in Sec. II be-
comes a system of two coupled Langevin equations. In Sec.
III we show that there is in fact a difference between the
three-dimensional problem and the two-dimensional case
studied in Ref. �12�, which is a rather subtle example of the
difficulties in applying Langevin approaches to nonlinear
equations �20�.

In Sec. IV we discuss a perturbation theory for the
Lyapunov exponent describing the phase transition, ex-

panded in powers of a parameter �
��−3/2 which is a di-
mensionless measure of the inertia of the particles. The per-
turbation theory is constructed by transforming the Langevin
equation first into a Fokker-Planck equation, and then into a
non-Hermitean perturbation of a three-dimensional isotropic
quantum harmonic oscillator. We are then able to use the
harmonic-oscillator creation and annihilation operators �21�
to express the perturbation theory in a purely algebraic form,
enabling us to compute the coefficients to any desired order.
We investigate the phase diagram �the line in parameter
space separating coalescing and noncoalescing phases�, us-
ing both Monte Carlo averaging of the Langevin equation
and the results of our perturbation theory. We find that ag-
gregation can only occur if the random flow has a certain
degree of compressibility, which increases as the effects of
inertia increase, until there is no coalescing phase even for a
purely potential flow field.

The analysis in Secs. II–IV considers the case where all of
the suspended particles have the same mass m and damping
rate �. This ideal can be approached quite accurately in
model experiments, but in most applications in the natural
world and in technology, the suspended particles will have
different masses, sizes, and shapes. In Sec. IV we discuss the
effect of dispersion in the distribution of masses in the one-
dimensional case: these arguments can be adapted to treat
higher dimensions and dispersion of the damping constant �.
We argue that path coalescence is not destroyed by mass
dispersion �although of course it is no longer a sharp transi-
tion�.

In this paper we give a quite comprehensive discussion of
the the case where the correlation time of the random flow is
very short, and the stochastic differential equations derived
in Sec. II can be approximated by Langevin equations. Sec-
tion VI discusses how our approach can be extended to other
cases.

II. EQUATIONS DETERMINING THE LYAPUNOV
EXPONENT

To determine whether particles cluster together, we con-
sider two nearby trajectories with spatial separation 
r and
momenta differing by 
p. The linearized equations of motion
derived from �1� are


ṙ =
1

m

p, 
ṗ = − �
p + F�t�
r . �5�

Here F�t� is proportional to the strain-rate matrix of the ve-
locity field, with elements

Fij�t� =
� f i

�rj
„r�t�,t… = m�

�ui

�rj
„r�t�,t… . �6�

It is convenient to parametrize 
r and 
p as follows:


r = Xn1, 
p = X�Y1n1 + Y2n2� , �7�

where n1 and n2 are orthogonal unit vectors, which depend
upon time. The parameter X is a scale factor: trajectories
coalesce if X decreases with probability unity in the long-
time limit. In the three-dimensional case, we find it conve-

AGGREGATION OF INERTIAL PARTICLES IN RANDOM FLOWS PHYSICAL REVIEW E 72, 051104 �2005�

051104-3



nient to introduce the third element n3=n1∧n2 of a time-
dependent orthonormal basis so that

ni · n j = 
ij and ni = �ijkn j ∧ nk. �8�

Differentiating �7�, and substituting the resulting expressions
into �5� gives


ṙ = Ẋn1 + Xṅ1 =
1

m
X�Y1n1 + Y2n2� ,


ṗ = Ẋ�Y1n1 + Y2n2� + X�Ẏ1n1 + Ẏ2n2� + X�Y1ṅ1 + Y2ṅ2�

= − �X�Y1n1 + Y2n2� + F�t�n1. �9�

Projecting 
ṙ onto the unit vectors ni gives the following
three scalar equations of motion:

n1 · 
ṙ = Ẋ =
1

m
Y1X ,

n2 · 
ṙ = X�n2 · ṅ1� =
1

m
Y2X , �10�

n3 · 
ṙ = Xṅ1 · n3 = 0.

The last of these equations implies that ṅ1∧n2=0, so that ṅ1
is proportional to n2: we write

ṅ1 = �̇n2 �11�

so that the equation for n2 ·
ṙ gives

�̇ =
1

m
Y2. �12�

The first equation of �10� indicates that X is a product of
random variables, and therefore has a log-normal distribu-
tion, that is, the logarithm of X has a Gaussian probability
density. In the limit as t→�, the mean and variance of loge X
are both linear functions of time:

�loge X� 
 �1t + c1, var�loge X� 
 �t + c2, �13�

where �1, �, c1, and c2 are constants. If �1�0, the probabil-
ity of loge X exceeding any specified value approaches zero
as t→�, implying that trajectories of nearby particles almost
always coalesce.

The Lyapunov exponent �1 is the mean value of the de-
rivative d loge X /dt, so that the first equation of �10� gives

�1 =
1

m
�Y1� . �14�

Now consider the three projections of 
ṗ, as given by Eq.
�9�:

n1 · 
ṗ = ẊY1 + XẎ1 + XY2�n1 · ṅ2� = − �XY1 + n1 · F�t�n1X ,

n2 · 
ṗ = ẊY2 + XẎ2 + XY1�ṅ1 · n2� = − �XY2 + n2 · F�t�n1X ,

�15�

n3 · 
ṗ = XY1�n3 · ṅ1� + XY2�n3 · ṅ2� = n3 · F�t�n1X .

We introduce the notation

ni�t� · F�t�n j�t� = Fij� �t� �16�

and use Eqs. �10�–�12� and �ni · ṅ j�+ �ṅi ·n j�=0 to simplify.
We find the following equations of motion for the variables
Yi:

Ẏ1 = − �Y1 +
1

m
�Y2

2 − Y1
2� + F11� �t� ,

Ẏ2 = − �Y2 −
2

m
Y1Y2 + F21� �t� . �17�

Finally, the equation for n3 ·
ṗ gives

n2 · ṅ3 = −
1

Y2
F31� �t� . �18�

Equations �14� and �17� are the principal results of this paper.
Equation �14� shows that the Lyapunov exponent �the sign of
which determines whether or not path coalescence occurs� is
given by the expectation value of a random variable Y1 of a
simple, finite dimensional stochastic dynamical system, de-
scribed by Eqs. �17�. This dynamical system is almost com-
pletely decoupled from the other variables: the equations for
Y1 and Y2 do not depend upon X, and the vectors ni�t� only
enter these equations through the evaluation of the random
matrix elements Fij� .

In the two-dimensional case the analysis leading to �17�
proceeds along similar lines, and leads to the same pair of
equations �12�. The only difference is that the equation �18�
is absent in the two-dimensional case. This suggests that the
expression for the Lyapunov exponent �1= �Y1� /m should be
the same in two and three dimensions. This would be a sur-
prising conclusion, but it is not obvious how it can be
averted. However, it does prove to be false, as will be dem-
onstrated in the next section for the limiting case where �
���1.

III. THE LANGEVIN APPROXIMATION

Let us now consider how to treat Eqs. �17� in the limit
where the correlation time � of F�t� is very short. Because
the random field f�r , t� is fluctuating very rapidly, the posi-
tion r�t� of a particle at time t is independent of the instan-
taneous value of the force f�r , t�, so that the value if Fij�t�
=�f i /�rj(r�t� , t) at the position of the particle is statistically
indistinguishable from a random sample of the field �f i /�rj.
We also assume that the gradients of the fluctuating forces
�the quantities F11� and F22� in Eqs. �17�� are sufficiently small
that the typical magnitude of the displacement of the vari-
ables Y1 , Y2 occurring during the correlation time � is small
compared to the typical magnitude of these variables. This
condition is expressed in terms of the dimensionless vari-
ables � and � later in this section. Under these conditions of
short correlation time and small amplitude, Eqs. �17� may be
replaced by Langevin equations. At first sight, this would
appear to lead to
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dY1 = �− �Y1 +
1

m
�Y2

2 − Y1
2�	dt + df1,

dY2 = �− �Y2 −
2

m
Y1Y2	dt + df2, �19�

where the dfi are increments of a Brownian process, satisfy-
ing �dfi�=0 and �dfidf j�=2Dijdt, for some constant diffusion
coefficients Dij. In the two-dimensional case, this expecta-
tion is correct �12�, and Eqs. �19� are the appropriate Lange-
vin equations. In the three-dimensional case, we will see that
an additional drift term must be added to the second of these
equations. This is a consequence of the fact that, in the three-
dimensional case, Y2 is a nonlinear function of the compo-
nents of the vector 
p−Y1
r because it is proportional to the
magnitude of this vector. This is an example of the difficul-
ties that arise when treating Langevin equations involving
nonlinear functions of noise terms �20�.

In order to determine the correct Langevin equations to
model �17�, let us consider the integral of the stochastic forc-
ing terms over a time interval 
t which is long compared to
�, but short enough that the change in the variables Yi occur-
ring in time 
t can be neglected. We define


f i�t� = �
t

t+
t

dt�Fi1� �t�� , �20�

and find

�
f i
f j� = 2Dij
t + O��� , �21�

where

Dij =
1

2
�

−�

�

dt�Fi1� �t�Fj1� �0�� . �22�

The calculation of �
f i�t�� is more subtle. We have

�
f i� = �
0


t

dt�ni�t� · F�t�n1�t�� . �23�

We must take account of the fact that the unit vectors ni�t�
are rotating: we write

ni�t� = �
k=1

3

Rik�t�nk�0� , �24�

where Rik�t� are elements of a rotation matrix. We now write
�23� in the form

�
f i� = �
0


t

dt�
k=1

3

�
l=1

3

�Rik�t�R1l�t�Fkl� �t�� . �25�

Now consider the rotation of the unit vectors: using �14� and
�18� we have

n1�t� = n1�0� + �̇n2�0�t + O�t2� ,

n2�t� = n2�0� − �̇n1�0�t +
1

Y2
�

0

t

dt�F31� �t��n3�0� + O�t2� ,

�26�

n3�t� = n3�0� −
1

Y2
�

0

t

dt�F31� �t��n2�0�, + O�t2� ,

so that

R�t� =

1 �̇t 0

− �̇t 1 Y2
−1�

0

t

dt�F31�

0 − Y2
−1�

0

t

dt�F31� 1
� + O�t2� .

�27�

We obtain

�
f i� = �
0


t

dt�
k

�Rik�t�Fk1� �t� + �̇tFk2� �t�� + O�
t2�

= �
0


t

dt�
k

�Rik�t�Fk1� �t�� + O�
t2� . �28�

This yields

lim

t→0

1


t
�
f1� =

1


t
�

0


t

dt�F11� �t� + �̇tF21� �t�� = 0,

lim

t→0

1


t
�
f2� =

1


t
�

0


t

dt�− �̇tF11� �t� + F21� �t�

+
1

Y2
�

0

t

dt�F31� �t�F31� �t���
=

1

Y2
t
�

0


t

dt�
0

t

dt��F31� �t�F31� �t��� =
1

Y2
D31.

�29�

The Langevin equations therefore contain an additional drift
term due to the fact that �
f2� is nonzero: the correct Lange-
vin equations in three dimensions are

dY1 = �− �Y1 +
1

m
�Y2

2 − Y1
2�	dt + d�1,

dY2 = �− �Y2 +
D31

Y2
−

2

m
Y1Y2	dt + d�2, �30�

with

�d�i� = 0, �d�id� j� = 2Dijdt . �31�

The diffusion constants Dij were defined in Eq. �22�. Note
that in two dimensions, however, �19� remains valid because
the term arising from the rotation of n3 is absent �12�.

Now consider the evaluation of the diffusion constants in
terms of the statistics of the force f�r , t�. The statistics of the
transformed matrix elements Fij� �t� are the same as those of
the original elements Fij�t�, because the statistics of the ve-
locity field are isotropic. The elements of the force-gradient
matrix F are
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Fij =
�2�

�ri � rj
+ �

k=1

3

�
l=1

3

�ilk
�2Ak

�rj � rl
, �32�

where �ilk is the “Kronecker �-symbol” describing the parity
of the permutation of the indices ilk. We define

D0 =
1

2
�

−�

�

dt� �2�

�r1
2 �t�

�2�

�r1
2 �0�� �33�

and D1=D11, D2=D21=D31, so that

D1 = D0�1 +
2	2

3
	 and D2 = D0�1

3
+

4	2

3
	 . �34�

We introduce a more convenient dimensionless measure of
the relative importance of solenoidal and potential fields as
in Ref. �12�,

� �
D2

D1
. �35�

From �34� we find that �= �1+4	2� / �3+2	2�, so that 1
3 ��

�2 �since 0�	���: �= 1
3 corresponds to purely potential

flow, while �=2 corresponds to purely solenoidal flow. In
two dimensions, by contrast, we found �= �1+3	2� / �3+	2�,
so that 1

3 ���3 �12�.
It is convenient to rescale the Langevin equations into

dimensionless form. We write

dt� = �dt, xi =� �

Di
Yi, dwi =� �

Di
d�i �36�

and define

� =
D1

1/2

m�3/2 . �37�

The dimensionless parameter � is related to those defined in
Eq. �4�: �
��−3/2. With these changes of variables, the
Langevin equations become

dx1 = �− x1 + ���x2
2 − x1

2��dt� + dw1,

dx2 = �− x2 + x2
−1 − 2�x1x2�dt� + dw2, �38�

with

�dwi� = 0, �dwidwj� = 2
ijdt�. �39�

Equations �38� must be solved to determine the expectation
value of x1 in the steady state. The Lyapunov exponent is
then given by

�1 = ���x1� . �40�

Figure 2�a� compares the Lyapunov exponent obtained
from a Monte Carlo simulation of Eqs. �38�–�40� with a di-
rect numerical simulation of a random flow described by Eq.
�1�. The Lyapunov exponents determined from Eqs. �38� and
�39� for �=1/3, 1, and 2 are plotted as solid �red� lines. The
results are compared to numerical simulations of �1�, using a
method described in Ref. �15� to determine the Lyapunov
exponent. Because we are concerned with the limit where the

correlation time � is taken to zero, the random flow was
generated using a discrete series of uncorrelated random im-
pulses, acting over a small time step 
t��: the impulse

fn�r� = �
n
t

�n+1�
t

dt�f�rt�,t�� �41�

at time n 
t is taken to be of the form �2� in terms of scalar
fields �n�r� and An�r� satisfying

��n�r��n��r��� = 
2�2
t exp��r − r��2/2�2�
nn� �42�

and similarly for An�r�. This implies

D0 = 3
2/�2m2�3�2� . �43�

Now we discuss the conditions under which the Langevin
equations �38� and �39� are a valid approximation of �17� and
�18�. For this purpose it is sufficient to consider the one-
dimensional version of Eqs. �30�, namely

Ẏ = − �Y −
1

m
Y2 + F�t� �44�

�this equation appears with a different notation in Ref. �13��.
The Langevin equations are valid provided the changes in
the value of Y over the correlation time � is small compared
to the typical values of this quantity. This criterion can ob-
viously only be satisfied if the correlation time is sufficiently
short that �=���1. The criterion also requires the stochastic
force F�t� to be sufficiently weak. The deterministic part of
the velocity, −�Y −Y2 /m, is positive in the interval from Y
=−�m to Y =0. The criterion on the strength of F

 /� is
that the displacement over time � should be small compared
to the width of that interval, that is �F����m. Using the fact
that �F�

 /�, we obtain the following criteria for the valid-
ity of the Langevin approximation:

�

�
� 1, � � 1. �45�

IV. PERTURBATION THEORY

We now show how to obtain an asymptotic approximation
for the Lyapunov exponent using Eqs. �38� and �39�. These
equations are equivalent to a two-dimensional Fokker-Planck
equation �Ref. �20�� for a probability density P�x1 ,x2 ; t��, of
the form

�t�P = D�P − � · �vP� = F̂P . �46�

Here the diffusion constant D=1 and the drift velocity is v
= �v1 ,v2� with components v1=−x1+���x2

2−x1
2� and v2=−x2

+x2
−1−2�x1x2. We write F̂= F̂0+�F̂1, and seek a steady-state

solution satisfying F̂P=0 by perturbation theory in �. In or-
der to simplify the application of perturbation theory, it is
convenient to make a transformation so that the unperturbed

Fokker-Planck operator F̂0 is transformed into a Hermitian
operator. Rather than proceeding to the Hermitian form di-
rectly, we first map the two-dimensional Fokker-Planck
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equation to a three-dimensional equation with a rotational
symmetry �we seek a solution which is invariant under rota-
tion�. After making this transformation, we find that the cor-
responding Hermitian operator in three-dimensional space is
the Schrödinger operator of an isotropic three-dimensional
harmonic oscillator. The perturbation analysis can then be
performed very easily, using the algebra of harmonic-
oscillator raising and lowering operators, described in Ref.
�21�. To shorten equations, we will use a variant of the Dirac
notation scheme: in summary, functions a , b are symbolized
by vectors �a� , �b�, linear operators are denoted by a hat, e.g.,

Â, and the integral over all space of the product of two
functions is denoted by the inner product �a �b�.

In the original form, the action of the unperturbed part of
the Fokker-Planck operator on a function P is

F̂0P = ��1
2 + �2

2�P + �1�x1P� + �2��x2 − x2
−1�P� . �47�

We transform this by defining the action of F̂0� on a function
P�= P /x2 as follows:

F̂0�P� =
1

x2
F̂0P

=
1

x2
��1

2 + �2
2��x2P�� +

1

x2
�1�x1x2P�� +

1

x2
�2��x2

2 − 1�P��

= �1���1 + x1�P�� +
1

x2
�2�x2��2 + x2�P�� . �48�

We now consider F̂0� to be an operator acting in three-
dimensional space, with cylindrical polar coordinates
�r ,� ,z�. We identify r=x2, and z=x1, and take P� to be a
function which is restricted so that it has cylindrical symme-
try, being independent of �. With this interpretation, we can

add differentials with respect to � to the definition of F̂0�, and
write

F̂0� =
1

r
�r�r��r + r�� +

1

r2��
2 + �z��z + z� �49�

which is the Fokker-Planck operator for isotropic diffusion in
three-dimensional space �with D=1�. Thus we have trans-
formed the two-dimensional Fokker-Planck equation to a
three-dimensional one with a very simple unperturbed veloc-
ity field. It is convenient to work with Cartesian coordinates
x= �x ,y ,z� in the three-dimensional space, having the usual
relation to the cylindrical polar coordinates �r ,� ,z�. The
Fokker-Planck equation is then

�t�P� = �2P� + � · ��x − �v1��P�� = F̂�P� = �F̂0� + �F̂1��P�,

�50�

where, in Cartesian coordinates, v1� is �expressed as a row
vector�:

v1� = „− 2xz,− 2yz,− z2 + ��x2 + y2�… . �51�

We now transform the Fokker-Planck operator F̂� so that F̂0�
turns into a very simple Hermitian operator, by writing

Ĥ = exp��0/2�F̂� exp�− �0/2� �52�

with �0= 1
2 �x2+y2+z2�. We find

FIG. 2. �Color online� �a� Lyapunov exponent as a function of �,
for a small value of �, results from Eqs. �38�, �39�, and �40� are
shown as solid lines, those from direct simulations as symbols, �
=1/3 ���, �=1 ���, and �=2 ���. The simulations were per-
formed with a simplified version of the dynamics using Eqs. �41�
and �42�. �b� Lyapunov exponent �1 / ���� versus � for �=0.45.
Shown are results from simulations ��� as well as from the
asymptotic series �68� summed to orders lmax=1,…,6: up to �*�lmax�
full lines and from �*�lmax� dashed lines. The simulations were per-
formed by replacing the components of fn�r� in �41� by random
numbers with the appropriate distributions. �c� Phase diagram in the
�-� plane. Shown are results from numerical simulations as de-
scribed above, �, summation of the asymptotic series �68� summed
to lmax

* ���, ��blue� line, showing discontinuities where lmax
* changes

and plotted for ��0.25�, as well as results from Langevin simula-
tions �smooth �red� line�.
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Ĥ0 = exp��0/2�F̂0� exp�− �0/2� = �2 + 1
4 �x2 + y2 + z2� + 3

2

�53�

so that Ĥ0 is �apart from a negative multiplicative factor� the
Hamiltonian operator for a three-dimensional harmonic os-

cillator. The spectrum of Ĥ0 is the set of nonpositive integers

�0,−1,−2,−3,…�. The eigenfunctions of Ĥ0 are generated
by raising and lowering operators �21�,

âx = 1
2x + �x, âx

+ = 1
2x − �x �54�

and similarly for the y and z coordinates. The transformed
perturbation operator is

Ĥ1 = − 2âx
+x̂ẑ − 2ây

+ŷẑ − âz
+�ẑ2 − ��x̂2 + ŷ2�� . �55�

Instead of solving the Fokker-Planck equation F̂�P�=0 we

attempt to solve ĤQ=0, where Q=exp��0 /2�P�.
Now consider how to obtain the Lyapunov exponent from

the function Q. We have �1=���z�. We calculate the average
of z as follows:

�z� = �
0

�

dr�
−�

�

dzP�r,z�

= �
0

�

rdr�
0

2�

d��
−�

�

dzzP��r,z�

= �
−�

�

dx�
−�

�

dy�
−�

�

dzz e−�0/2Q�x,y,z� . �56�

Now we change the notation, using a variant of the Dirac
notation to represent the function Q by a ket vector �Q�.
Allowing for the possibility that �Q� is not normalized, we
write

�z� =
��000�ẑ3�Q�

��000�Q�
=

��000�â3�Q�
��000�Q�

, �57�

where ��000� is the ground-state eigenfunction of H0, given
by the function exp�−�0 /2�=exp�−�x2+y2+z2� /4�.

We calculate �Q� by perturbation theory, writing

�Q� = �Q0� + ��Q1� + �2�Q2� + ¯ �58�

we find that the functions �Qk� satisfy the recursion relation

�Qk+1� = − Ĥ0
−1Ĥ1�Qk� . �59�

At first sight this appears to be ill defined because one of the
eigenvalues of H0 is zero, so that the inverse of H0 is only
defined for the subspace of functions which are orthogonal to
the ground state, ��000�. However, because all of the compo-
nents of H1 have a creation operator as a left factor, the

function Ĥ1��� is orthogonal to ��� for any function ���, so
that �59� is in fact well defined. The iteration starts with
�Q0�= ��000�. The functions �Qk� should all have rotational
symmetry about the z axis. The angular-momentum operator

Ĵz= p̂xŷ− p̂yx̂ commutes with both Ĥ0 and Ĥ1 �that is,

�Ĥ0 , Ĵz�=0 and �Ĥ1 , Ĵz�=0 where we use square brackets

for the commutator, �Â , B̂�=ÂB̂− B̂Â�. The operators Ĥ0

and Ĥ1 can therefore be simultaneously reduced to block

diagonal form, with blocks labelled by eigenvalues of Ĵz. We
can restrict ourselves to the subspace where the eigenvalue

of Ĵz is zero. The functions of this subspace are generated
from the ground state using transformed raising and lowering
operators, defined as follows:

	̂+ =
1
�2

�âx + iây�, 	̂− =
1
�2

�âx − iây� . �60�

The transformed operators 	̂+ and 	̂− satisfy �	̂± , 	̂±
†�= Î

�where Î is the identity operator�, which is the fundamental
relation describing harmonic-oscillator raising and lowering

operators. Expressing Ĥ0 and Ĵz in terms of these operators,
we find

Ĵ3 = 	̂−
†	̂− − 	̂+

†	̂+

Ĥ0 = − �	̂−
†	̂− + 	̂+

†	̂+ + az
†az� . �61�

Using results from �21�, we see that both Ĥ0 and Ĵz are
linear combinations of harmonic-oscillator Hamiltonians,
	̂−

†	̂−, 	̂+
†	̂+, and âz

†âz. The nth eigenfunction ��n� of a
harmonic-oscillator Hamiltonian â†â is obtained from its
ground state ��0� by repeated application of the raising op-
erator â†:

��n� =
1

�n!
�â†�n��0� �62�

and this eigenfunction has eigenvalue n. Thus eigenfunctions

of Ĥ0 and Ĵz with zero angular momentum are constructed
as follows:

��nm� =
1

n!

1
�m!

�	̂−
†�n�	̂+

†�n�âz
†�m��000� �63�

for n=0,1,… and m=0,1,… . The corresponding eigenvalues

of Ĥ0 are −2n−m. The functions �Qk� are expanded in terms
of the ��nm�, with coefficients anm

�k�:

�Qk� = �
n=0

�

�
m=0

�

anm
�k� ��nm� . �64�

By projecting Eq. �59� onto the vector ��nm� and using the

fact that the eigenvectors ��n�m�� of Ĥ0 form a complete
basis, the iteration can be expressed as follows �for �n ,m�
� �0,0��:

anm
�k+1� = �

n�=0

�

�
m�=0

� ��nm�Ĥ1��n�m��

2n + m
an�,m�

�k� . �65�

The matrix elements ��nm�Ĥ1��n�m�� are readily computed
using the algebraic properties of the raising and lowering
operators, as discussed in Ref. �21�. The coefficients anm

�k� are
then calculated recursively. This allows us to obtain the func-
tions �Qk�. The lowest order is �Q0�= ��000�. Its contribution

MEHLIG et al. PHYSICAL REVIEW E 72, 051104 �2005�

051104-8



to �1 vanishes in view of �55�. The leading order is

�Q1� = −
4

3
��11� − ��01� −

�6

3
��03� + 2���01� +

2�

3
��11� .

�66�

The next order, �Q2�, does not contribute to �1 since Ĥ1�Q1�
does not contain ��01�. In fact, only odd orders contain ��01�
and thus give nonzero contributions to �1. We also find that
the denominator in �58� is unity at all orders. The final result
is:

�1 = ���
l=1

�

cl����2l−1, �67�

where the first five coefficients cl��� are

c1��� = − 1 + 2� ,

c2��� = − 5 + 20 � − 16 �2,

c3��� = − 60 + 360 � − 568 �2 + 272 �3,

c4��� = − 1105 + 8840 � − 61 936/ 3 �2 + 58 432/ 3 �3

− 19 648/ 3 �4,

c5��� = − 27 120 + 271 200 � − 7 507 040/ 9 �2,

+ 3 492 160/ 3 �3 − 2 316 032/ 3 �4

+ 1 785 856/ 9 �5. �68�

The coefficients cl��� increase rapidly, having a factorial
times power growth as l→� which is typical of asymptotic
series �22�. Figure 2�b� shows approximations to the
Lyapunov exponent �1 for �=0.45. Shown are six different
partial sums of the series �67�, including terms up to lmax,
with lmax=1,…,6. For a given value of �, there is an optimal
value of lmax, which we term lmax

* , defined by the criterion
that the term in �67� with index lmax

* is smallest in magnitude.
The function lmax

* ��� can be inverted, its inverse �*�lmax� is
the value of � for which the lmax term is optimal. For values
of � less than the �*�lmax� the results are shown as solid lines.
Beyond this value of �, the results are shown as dashed lines.
The results show that, for sufficiently large lmax, the series
agrees well with the numerical simulation up to �*, as would
be expected for an asymptotic series.

The phase boundary in the �-� plane is determined by the
condition �1=0. Figure 2�c� shows this phase boundary as
determined from truncating the series �68� at the optimal
order lmax

* ��� ��blue� line, showing discontinuities where lmax
*

changes�. This asymptotic result is shown for values of � up
to �0.25. Beyond this range, the asymptotic approximation
becomes increasingly inaccurate. Also shown, in the same
plot, are results obtained from the Langevin equations �Eqs.
�38�, �39�, and �40��, and from direct simulations ���. The
results show that the coalescing phase disappears as the ef-
fect of inertia is increased: the coalescing disappears alto-
gether for the case of pure potential flow ��= 1

3
� at ��0.33.

One notable difference between the three-dimensional
calculation presented here and the two-dimensional case con-
sidered in Ref. �12� is that in the two-dimensional case the
phase boundary has a power series in � which vanishes iden-
tically.

V. EFFECT OF DISPERSION OF PARTICLE MASSES

In most naturally occurring aerosols the suspended par-
ticles have different mass m, and particles of differing sizes
will also have different values of the damping coefficient �.
It is important to consider whether particles still have a ten-
dency to coalesce even when the particles have differing val-
ues of m and �: we argue that the path coalescence effect is
not destroyed by small mass dispersion. The argument can be
adapted to dispersion of the damping coefficient, reaching
the same conclusion.

Assume that the path-coalescence effect occurs for par-
ticles of mass m. Compare the motion of this reference par-
ticle with that of an initially nearby particle with mass m
+
m. The reference particle has equation of motion

mẍ = − �mẋ + f�x,t� . �69�

Writing f�x+
x , t�= f�x , t�+F�t�
x+O�
x2�, the equation of
motion for the other particle is

�m + 
m��ẍ + 
ẍ� = − �m�ẋ + 
ẋ� + f�x,t� + F�t�
x + O�
x2� .

�70�

Collecting the terms which are first order in 
x, we obtain a
linearized equation of motion for 
x,

− m
ẍ − �m
ẋ + F�t�
x = 
mẍ . �71�

This is an inhomogeneous differential equation for the sepa-
ration 
x between two particles, with a driving term propor-
tional to their mass difference 
m. The solution of this equa-
tion can be constructed from a Green’s function satisfying
G�t , t0�,

− m
d2G

dt2 − �m
dG

dt
+ F�t�G = 
�t − t0� �72�

with G�t , t0�=0 for t� t0. The solution of Eq. �71� is


x�t� = 
m�
0

t

dt�G�t,t��
d2x�t��

dt�2 . �73�

For t� t0, Eq. �72� is the equation for small displacements of
trajectories of particles with the same mass. We know that in
the path-coalescing phase the solutions have a negative value
of the Lyapunov exponent �1, and that they therefore decay
exponentially at large time. In the case where G�t , t�� is
bounded by an exponentially decreasing function, such that
�G�t , t����A exp�−�1�t− t���, Eq. �73� remains finite as t
→�. For sufficiently large A, the probability of this inequal-
ity being violated is extremely small. This indicates that in
the path-coalescing phase the solution �73� remains finite as
t→�, except for very rare events. The conclusion is that,
when �1�0, two initially close particles with nearly equal
mass will remain in close proximity for a very long time.
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VI. DISCUSSION

In this paper we described the path-coalescence transition,
and showed that the transition point is determined by the
change of sign of a Lyapunov exponent. We showed that in
general the Lyapunov exponent is determined from an expec-
tation value of a variable of a simple dynamical system, Eqs.
�17�, which is driven by stochastic forcing functions. We
considered the solution of these equations in a particular lim-
iting case, where the dimensionless parameters satisfy �
���1, by mapping the continuous differential equations
into a pair of coupled Langevin equations. We used these
Langevin equations to produce a rather complete description
of the phase transition in that limit. The remainder of these
concluding remarks discuss how Eqs. �17� can be used in the
case where these inequalities are not satisfied.

In order to solve these differential equations it is neces-
sary to characterize the statistics of the stochastic driving
terms Fij� �t�. These terms contain information about the
strain-rate of the field evaluated at a point along the reference
particle trajectory. There are two possibilities:

Case A: The statistics of the strain-rate tensor along a
trajectory may be indistinguishable from those sampled
along a randomly chosen trajectory.

Case B: The trajectory may select regions where the
strain-rate tensor has atypical properties, for example, by
tracking points where the velocity vector u vanishes.

If case A is realized there are two further possibilities:
Case A1: The trajectory r�t� is sufficiently slowly moving

that the displacement over time � is small compared to �. In
this case the statistics of Fij� are those of a randomly chosen
static point, and the correlation time of Fij� �t� will be �.

Case A2: If the trajectory r�t� is moving sufficiently rap-
idly that its displacement in time � is large compared to �,
then the correlation time of Fij� �t� will be smaller than �
because the loss of correlations results primarily from chang-
ing the position at which �ui /�rj�r , t� is sampled.

The limit which was investigated in detail in this paper
�����1� is an example of case A1. In cases where � and �
approach different limits however, all three possibilities can
occur in the system described by Eqs. �1�–�3�.
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